

POWER QUALITY ION Solutions

Presentation Outline

- 1. Review of PQ definitions
- 2. Types of Power Quality problems
- 3. Metering Equipment
- 4. Locations
- 5. Cases (Voltage Sags)

Power Quality is not a problem

• until

Power Quality is a problem

• Fool me once, Shame on you.

• Fool me twice, Shame on me.

Definition of PQ

- What is Power Quality
 - The concept of powering and grounding sensitive electronic equipment in a manner that is suitable to the operation of that equipment. IEEE 1100-1992
 - The concept of power and grounding electronic equipment in a manner that is suitable to the operation of that equipment (and compatible with the premise wiring system and other connected equipment. IEEE 1100-1999

Definition of PQ

 The definition of Power Quality cannot be limited to the characteristics of the supply power. The definition must also include the requirements of the load and the neighbouring loads.

Types of Power Quality Issues

Types of Power Quality Issues

- VOLTAGE SAGS
- VOLTAGE SWELLS
- TRANSIENTS
- HARMONICS

PQ – Voltage Sag

Complete loss

- Momentary: < 2 seconds
- Temporary: between 2 sec & 2 min.
- Outage: > 2 min
- Motor startup
- System faults
- Load switching.
- PF correction.

PQ – Voltage Sag

ITIC Curve: Voltage-Tolerance Envelope

PQ – Voltage Swell

- Increase in 2 phases with grounding of a phase in a delta system
- Sudden loss of large load.

PQ - Transients

Sudden non-power frequency change

- High freq (>500kHz)
 - System response to impulse Trans.
- Med. Freq (5kHz → 500kHz)
 - Cable switching or cap bank switching
- Low Freq (<5kHz)
 - Cap switching on distribution system
- Lightning Strikes

PQ - Harmonics

- Produced by,... Non-linear loads
- A Load is nonlinear if the voltage and current do not have a direct or continuous relationship.

Types of Power Quality Issues

The Energy Solutions People

Types of ION METERS

Metering Equipment

Sample rate

- Should have at least 4 samples per ½ cycle in order to capture full transient peak.
- Sample rate based on frequency of interest.
- Ion Meters will sense majority of spikes. The magnitude may not be sensed but information gained is very valuable for PM and troubleshooting.
- Instrument Transformers (bandwidth limited)
 - High frequency CT's

Metering Location

1. Point of Common Coupling

• Will assist in determining source of PQ issue

2. Critical & Sensitive Loads

• Will monitor what your equipment is sensing.

If meters / monitors are networked then timeline can be used to match the disturbances as it is seen across the distribution system.

Metering Location

1. Voltage consideration

- Match the voltage configuration of your distribution system.
 - If Delta then delta
 - If Wye then Wye.

Loss of phase on delta system will be detected with Ph – Gnd PT setup.

Threshold Settings per IEEE Std. 1159-1995

- Sag 108 Vrms [0.9 p.u]
- Swell 126 Vrms [1.05 p.u.]
- Transient 200 V [approx. 2 times ph-n]
- Harmonics 5 % THD
- Phase imbalance 2 %
 - (critical for induction motors)

Vista - guest - 2[User Diagram:8500_FAC-35S_V1.9.0-pq]]							
File Edit Options View Window Help							
	Duration	Magnitude Phase1	Magnitude Phase2	Magnitude Phase3	Cause	timestamp	
98	0.008	105	105	107	SagSwell	10/08/2007 03:17:49.852 AM	
99	0.033	105	105	107	SagSwell	10/08/2007 03:17:49.818 AM	
100	0.016	105	105	107	SagSwell	10/08/2007 03:17:49.752 AM	
101	0.033	105	105	107	SagSwell	10/08/2007 03:17:49.727 AM	
102	0.016	105	105	107	SagSwell	10/08/2007 03:17:49.652 AM	
103	0.008	105	105	107	SagSwell	10/08/2007 03:17:49.627 AM	
104	0.033	105	105	107	SagSwell	10/08/2007 03:17:49.202 AM	
105	0.008	105	105	107	SagSwell	10/08/2007 03:17:49.102 AM	
106	0.008	105	105	107	SagSwell	10/08/2007 03:17:48.952 AM	
107	0.075	105	105	107	SagSwell	10/08/2007 03:17:48.902 AM	
108	0.025	105	105	107	SagSwell	10/08/2007 03:17:48.802 AM	
109	0.025	105	105	107	SagSwell	10/08/2007 03:17:48.752 AM	
110	0.05	105	105	107	SagSwell	10/08/2007 03:17:48.710 AM	
111	0.041	105	105	107	SagSwell	10/08/2007 03:17:48.652 AM	
112	0.00013			128	Transient Phase3	08/08/2007 11:42:10.605 AM	
113	0.000065	126			Transient Phase1	04/08/2007 04:02:54.787 PM	
114	0.000065			129	Transient Phase3	03/08/2007 03:41:39.451 PM	
115	0.00013	128			Transient Phase1	03/08/2007 09:13:42.402 AM	
116	0.000065	129			Transient Phase1	02/08/2007 11:10:02.673 AM	
117	0.00013			129	Transient Phase3	02/08/2007 11:10:02.673 AM	
9:11 PM							

From transient log file

From waveform log file

- OBSERVATION
 - PT fuse failure.
 - [high resistance element]

🔰 Vista - guest - [Log View Plotter - RODAN_EMS.N_M_A[User Diagram:8500_FAC-9S-39S_V1.9.0-pq]]

Plot Display Harmonics Analysis Phasor Diagram

From multiple waveform log file

_ 7 ×

_ 8 ×

- OBSERVATION
 - 3000 HP compressor Motor.
 - Start up signature curve.

OBSERVATION

- Events following a relay operation reviewed.
- Assist in assessment of faults & on the re-energization
- Restored Power to distribution
 Equipment in timely manner

The Energy Solutions People

OBSERVATION

- Utility phase to phase failure
 - Fault seen downstream of 2 stepdown transformers.
 - Fault seen downstream of 1 stepdown transformers.
- Fault was then cleared and system voltage restored.

Conclusion

 Power Quality is not a problem until Power Quality is a problem

Fool me once, Shame on you. Fool me twice, Shame on me.

Q&A – Thank you

Bryce Moor Specialist, Metering & Energy Management Services

RODAN ENERGY & METERING SOLUTIONS INC.

165 Matheson Blvd. East, Suite 6 Mississauga, ON L4Z 3K2 Canada

Tel (905) 625-9900 ext. 225 Fax (905) 625-4307 email: bryce.moor@rodanpower.com web: www.rodanpower.com

