ELECTRICAL POWER QUALITY

What it is, why it's important and how to improve it

Kevin Loucks, P.Eng., CEM

National Sales Manager – Power Quality
Schneider Electric

PowerLogic Users Group Conference 2016 – Toronto, ON Thursday October 27th, 2016

Power Quality in Electrical Power Systems Where do Power Quality problems come from

What is Power Quality

An ideal three-phase Electrical Energy Supply system has the following characterisctics for each phase:

- Nominal magnitude
- Nominal frequency (60Hz)
- Sinusoidal waveform
- Symmetry on all 3 phases

A disturbance of one or may of these parameters constitutes a Power Quality disturbance

Disturbance category	Waveform	Effects	Possible causes	
Transients	₩ ₩	Equipment malfunction and damage	Lightning or switching of inductive / capacitive loads	
Interruption	AAA AAA Do		Utility faults, equipment failure, breaker tripping	
Sag	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Downtime, system halts, data loss	Utility or facility faults, startup of large motors	
Swell	₩₩₩₩	Equipment damage and reduced life	Utility faults, load changes	
Undervoltage	Www.ww	Shutdown, malfunction, equipment failure	Load changes, overload, faults	
Overvoltage	www	Equipment damage and reduced life	Load changes, faults, over compensation	
Harmonics	www	Equipment damage and reduced life, nulsance breaker tripping, power losses	Electronic loads (non- linear loads)	
Unbalance	 XXX	Malfunction, motor damage	Unequal distribution of single phase loads	
Voltage fluctuations	^ / ^√√√√√	Light flicker and equipment malfunction	Load exhibiting significant current variations	
Power frequency variations	₩	Malfunction or motor degradation	Standby generators or poor power infrastructure	
Power Factor*		Increased electricity bill, overload, power losses	Inductive loads (ex. motors, transformers)	

Why do we care about Electrical Power Quality

- 1. Process reliability
- 2. Equipment life
- 3. Maintenance costs
- 4. Energy efficiency
- 5. Cost of energy
- 6. GHG emissions

The primary causes of the increasing prevalence of Power Quality problems are

- A massive increase in the installation and use of non-linear loads
- 2. An increased reliance on sensitive equipment for the control of production and business processes

Understanding the root of Power Quality problems

Linear Load

Non-Linear Load

How much does one hour of unplanned downtime cost?

Industry	Hourly Downtime Costs \$6,450,000		
mruusu y			
Brokerage Operations			
Energy	\$2,817,846		
Credit Card Sales Authorizations	\$2,600,000		
Telecommunications ,	\$2,066,245		
Manufacturing **	\$1,610,654		
Financial Institutions	\$1,495,134		
Information Technology	\$1,344,461		
Insurance	\$1,202,444		
Retail	\$1,107,274		
Pharmaceuticals	\$1,082,252		
Banking	\$996,802		
Food/Beverage Processing	\$804,192		
Consumer Products	\$785,719		
Chemicals	\$704,101		
Transportation	\$668,586		
Utilities	\$643,250		
Healthcare	\$636,030		
Metals/Natural Resources	\$580,588		

How much does a Power Quality event cost?

How much are poor Power Quality events costing you?

The following average costs by type of poor Power Quality event were calculated from the survey results:

€120,000 - 180,000
€90,000
€18,000 - 36,000
€7,000 - 14,000
€2,000 - 4,000

Source: LPQI 2015 (Leonardo Power Quality Initiative)_

Power Quality disturbances are one of the major causes of unplanned outages and equipment failures

30-40% of all unplanned outages are related to poor Power Quality

Most common power quality issues (US)

Most common power quality issues (EU)

Companies get sued & people get fired when this stuff happens

Benefits of improving your Power Quality

Mini-EVR SureVolt SagFighter

Sags Swells Volt. Regulation

V Can Banks

LV Cap Banks

VarSet AV6000 AT6000

LV PFC

Harmonics Load imbalance Ficker PPC

AccuSine PCS+ AccuSine PFV+ AccuSine SWP Active Harmonic Filtering and VAR Compensation

MV Equipment

MV PFC

Capacitors (Propivar NG)
Metal Enclosed Banks

Power Quality problems

Power Management Offer Portfolio

Measure

Gather accurate power and energy data from key distribution points, monitor power quality, log events

Interoperability
Standard Industry protocols and form factors
Customization: scalability in size and
performance

Understand

Turn data into meaningful, actionable information for you and your stakeholders

Robust, flexible software platform architectures
Real-time energy consumption monitoring
Dynamic control interfaces
Real-time and historical power quality analysis

Act

Make timelier, intelligent decisions based on valid, actionable information

Increased energy efficiency and cost savings
Maximize electrical network reliability and
availability
Optimize electrical asset performance

Turnkey Project case study Active Harmonic Filter installation in existing hospital

Power Quality disturbances

- 1. Voltage Distortion (aka THDv or Vthd)
- 2. Voltage Sag
- 3. Multiple Zero crossings

POWER		VOLTAGE		CURRENT	
Freq	57.813 Hz				
P1	0.0473MW	U1	116.48 V	11	0.4268kA
P2	0.0611MW	U2	115.84 V	12	0.5341kA
P3	0.0521MW	U3	115.70 V	13	0.4640kA
Psum	0.1606MW	THD-U1	3.25 %	THD-I1	10.12 %
S1	0.0497MVA	THD-U2	6.79 %	THD-I2	10.71 %
S2	0.0619MVA	THD-U3	7.41 %	THD-I3	12.48 %
S3	0.0537MVA	Upk+1	157.57 V	lpk+1	0.616kA
Ssum	0.1653MVA	Upk+2	163.26 V	lpk+2	0.884kA
Q1	0.0152Mvar	Upk+3	165.17 V	lpk+3	0.792kA
Q2	0.0097Mvar	Upk-1	-164.25 V	lpk-1	- 0.715kA
Q3	0.0128Mvar	Upk-2	-160.14 V	lpk-2	- 0.841kA
Qsum	0.0377Mvar	Upk-3	-159.81 V	lpk-3	- 0.736kA
PF1	0.9523	Uave	116.01 V	KF1	1.17
PF2	0.9877	Uunb	0.65 %	KF2	1.24
PF3	0.9711			KF3	1.30
PFsum	0.9716			lave	0.4750kA
				lunb	7.63 %

POWER		VOLTAGE		CURRENT	
Freq	59.968 Hz				
P1	0.0728MW	U1	119.09 V	11	0.6225kA
P2	0.0872MW	U2	120.17 V	12	0.7303kA
P3	0.0717MW	U3	120.51 V	13	0.6059kA
Psum	0.2317MW	THD-U1	4.78 %	THD-I1	7.94 %
S1	0.0741MVA	THD-U2	4.72%	THD-I2	8.86 %
S2	0.0878MVA	THD-U3	4.70 %	THD-I3	8.51 %
S3	0.0730MVA	Upk+1	163.45 V	lpk+1	0.931kA
Ssum	0.2349MVA	Upk+2	163.81 V	lpk+2	1.112kA
Q1	0.0139Mvar	Upk+3	164.07 V	lpk+3	0.939kA
Q2	0.0103Mvar	Upk-1	-162.38 V	lpk-1	- 0.944kA
Q3	0.0137Mvar	Upk-2	-162.93 V	lpk-2	-1.120kA
Qsum	0.0379Mvar	Upk-3	-163.74 V	lpk-3	- 0.940kA
PF1	0.9824	Uave	119.92 V	KF1	1.53
PF2	0.9930	Uunb	0.30 %	KF2	1.47
PF3	0.9822			KF3	1.59
PFsum	0.9863			lave	0.6529kA
				lunb	6.18%

Possible solutions

Solution	Pros	Cons	Mitigates Voltage Distortion on Dialysis Machine	Mitigates Voltage Sag on Dialysis Machine	Mitigates Multiple Zero Crossings on Dialysis Machine	Estimate	Recommended
1. Active Harmonic Filter	Will solve Vthd problem in the entire distribution system	Requires further analysis to size correctly	*	×	×	TBD	*
2. SagFighter	Protects the Dialysis Machines	No effect on PQ problems	×	V	V	64,000\$ + installation	₩
3. UPS	Protects the Dialysis Machines	No effect on PQ problems	*	1	V	120,000\$ + installation	×

Substation measurements

Unit Substation B (600V)

Bus A: THDv = 3.6 %,

THDi = 14.8 % at 1,113 A

Bus B: THDv = 4.2 %

THDi = 13.8 % at 1,368 A

Switchboard ED (600V)

Bus A: THDv = 3.7%

THDi = 8.0% at 594 A

Bus B: THDv = 4.6%

THDi = 19.3% at 723 A

Unit Substation C (208V)

Bus A: THDv = 3.6%

THDi = 6.2 % at 200 A

Bus B: THDv = 4.2%

THDi = 3.4% at 295 A

Unit Substation EF (208V)

Bus A: THDv = 3.6%

THDi = 5.8% at 250 A

Bus B: THDv = 4.6%

THDi = 5.5% at 265 A

Simplified hospital electrical system

Power Factor Correction Capacitor Banks

Power Factor Problem

Causes

 Large motors, Lightly loaded transformers

Signs/Symptoms

Power Factor penalty on utility bills

Business Impact

- \$\$\$ Penalty
- Wasted electrical capacity

Solution

- Capacitor Bank
- Inverter-based PFC system

Poor Power Factor is an opportunity for savings

- Power Factor (PF) is a measure of how efficiently one draws power from the grid
- It is expressed as a percentage
 - 77% or 0.77
- Below 90% (or 95%), a billing penalty is applied by the utility
- If the current is "in phase" with the voltage, the PF=100%
- PF can be improved with AC capacitors

Be careful !!!

 By applying the wrong capacitor system, you can create other PQ problems: Resonance, Voltage Distortion, Voltage Transients

Standard Automatic Capacitor Bank

Standard automatic

capacitor bank:

- Contains stages (or steps)
- Each stage contains:
 - Mold Case Circuit Breakers
 - Contactors for switching capacitor
 - Capacitors
- Usually installed at the main substation
- The PFC Controller measures the PF & switched capacitor stages as required to maintain a PF above the desired value

Anti-Resonant Low Voltage Automatic Capacitor Bank with Detuning Rector (DR)

De-Tuned automatic capacitor bank:

- Same as automatic capacitor bank with De-Tuning Reactor (DR) :
- Works like a standard automatic capacitor bank
- Stops the resonance between the capacitors and the supply transformer.
- (aka Filtered or Anti-Resonant)

VarSet LV Capacitor Bank

- Available at 208V, 480V and 600V
- Available with Main Lugs and Main Breaker
- Available in Standard Automatic and Detuned Automatic

AccuSine PQ Inverter

Harmonic Distortion Problem

Harmonic Distortion can affect current and voltage

- Harmonic Distortion exists because the waveform contains higher order frequencies (multiples of the 60Hz fundamental or "harmonics")
- Harmonic Distortion is the most common Power Quality problem today, excluding poor PF
- In the context of Electrical Power Systems, Harmonic Distortion is usually separated into:
 - 1. Current Distortion
 - 2. Voltage Distortion

Harmonic Distortion – Current

Harmonic Current Distortion is the most common form of electrical pollution in today's industrial, institutional and commercial facilities

Causes

 "Non-linear" loads: VFDs, electronic power supplies, Arc Furnaces, anything electronic, Most things energy efficient

Signs/Symptoms

- Transformers/cables overheating
- Nuisance tripping of circuit breakers
- Fuses blowing
- Voltage Distortion
- Capacitors overheating

Business Impact

- Low energy efficiency
- High repair costs

Solution

- Active Harmonic Filter
- Line inductances in front of "non-linear" loads
- Passive Harmonic Filter
- Distortion free devices

Harmonic Distortion - Voltage

Harmonic Voltage Distortion is the most pernicious Power Quality problem encountered in today's industrial, institutional and commercial facilities

Causes

- Usually, Current Distortion flowing through standard transformers
- Rarely, Distorted Voltage from Utility

Signs/Symptoms

- Sensitive equipment "crashing" intermittently: Computers, PLCs, VFDs, Medical equipment, Communication systems
- Motors overheating
- Capacitors failing prematurely
- High replacement rate for sensitive electronics

Business Impact

- Unreliable electrical system: Downtime
- Intermittently unavailable IT and financial transaction systems
- High repair costs
- Low energy efficiency

Solution

Eliminate Current Distortion

AccuSine PCS+

AccuSine PLUS theory of operation

AccuSine PLUS is a power electronic converter utilizing digital logic to inject corrective currents into a 3-phase power-source. These injected currents will compensate for existing harmonic currents from the 2nd to the 50th harmonic order drawn by non-linear loads connected to that grid.

Harmonic Mitigation with AccuSine® PCS

	AS off	AS on
Order	% I fund	% I fund
Fund	100.000%	100.000%
3	0.038%	0.478%
5	31.660%	0.674%
7	11.480%	0.679%
9	0.435%	0.297%
11	7.068%	0.710%
13	4.267%	0.521%
15	0.367%	0.052%
17	3.438%	0.464%
19	2.904%	0.639%
21	0.284%	0.263%
23	2.042%	0.409%
25	2.177%	0.489%
27	0.293%	0.170%
29	1.238%	0.397%
31	1.740%	0.243%
33	0.261%	0.325%
35	0.800%	0.279%
37	1.420%	0.815%
39	0.282%	0.240%
41	0.588%	0.120%
43	1.281%	0.337%
45	0.259%	0.347%
47	0.427%	0.769%
49	1.348%	0.590%
% THD(I)	35.28%	2.67%

AccuSine PCS+ Performance

